Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
McIntyre, L (Ed.)Abstract Genome sequencing for agriculturally important Rosaceous crops has made rapid progress both in completeness and annotation quality. Whole genome sequence and annotation give breeders, researchers, and growers information about cultivar-specific traits such as fruit quality and disease resistance, and inform strategies to enhance postharvest storage. Here we present a haplotype-phased, chromosomal-level genome of Malus domestica, ‘WA 38’, a new apple cultivar released to market in 2017 as Cosmic Crisp®. Using both short and long-read sequencing data with a k-mer-based approach, chromosomes originating from each parent were assembled and segregated. This is the first pome fruit genome fully phased into parental haplotypes in which chromosomes from each parent are identified and separated into their unique, respective haplomes. The two haplome assemblies, ‘Honeycrisp’ originated HapA and ‘Enterprise’ originated HapB, are about 650 Megabases each, and both have a BUSCO score of 98.7% complete. A total of 53,028 and 54,235 genes were annotated from HapA and HapB, respectively. Additionally, we provide genome-scale comparisons to ‘Gala’, ‘Honeycrisp’, and other relevant cultivars highlighting major differences in genome structure and gene family circumscription. This assembly and annotation was done in collaboration with the American Campus Tree Genomes project that includes ‘WA 38’ (Washington State University), ‘d’Anjou’ pear (Auburn University), and many more. To ensure transparency, reproducibility, and applicability for any genome project, our genome assembly and annotation workflow is recorded in detail and shared under a public GitLab repository. All software is containerized, offering a simple implementation of the workflow.more » « less
-
Modeling the evolution of Schizosaccharomyces pombe populations with multiple killer meiotic driversMcIntyre, L (Ed.)Meiotic drivers are selfish genetic loci that can be transmitted to more than half of the viable gametes produced by a heterozygote. This biased transmission gives meiotic drivers an evolutionary advantage that can allow them to spread over generations until all members of a population carry the driver. This evolutionary power can also be exploited to modify natural populations using synthetic drivers known as “gene drives.” Recently, it has become clear that natural drivers can spread within genomes to birth multicopy gene families. To understand intragenomic spread of drivers, we model the evolution of 2 or more distinct meiotic drivers in a population. We employ the wtf killer meiotic drivers from Schizosaccharomyces pombe, which are multicopy in all sequenced isolates, as models. We find that a duplicate wtf driver identical to the parent gene can spread in a population unless, or until, the original driver is fixed. When the duplicate driver diverges to be distinct from the parent gene, we find that both drivers spread to fixation under most conditions, but both drivers can be lost under some conditions. Finally, we show that stronger drivers make weaker drivers go extinct in most, but not all, polymorphic populations with absolutely linked drivers. These results reveal the strong potential for natural meiotic drive loci to duplicate and diverge within genomes. Our findings also highlight duplication potential as a factor to consider in the design of synthetic gene drives.more » « less
-
McIntyre, L (Ed.)Abstract Foliar diseases of maize are among the most important diseases of maize worldwide. This study focused on 4 major foliar diseases of maize: Goss's wilt, gray leaf spot, northern corn leaf blight, and southern corn leaf blight. QTL mapping for resistance to Goss’s wilt was conducted in 4 disease resistance introgression line populations with Oh7B as the common recurrent parent and Ki3, NC262, NC304, and NC344 as recurrent donor parents. Mapping results for Goss’s wilt resistance were combined with previous studies for gray leaf spot, northern corn leaf blight, and southern corn leaf blight resistance in the same 4 populations. We conducted (1) individual linkage mapping analysis to identify QTL specific to each disease and population; (2) Mahalanobis distance analysis to identify putative multiple disease resistance regions for each population; and 3) joint linkage mapping to identify QTL across the 4 populations for each disease. We identified 3 lines that were resistant to all 4 diseases. We mapped 13 Goss’s wilt QTLs in the individual populations and an additional 6 using joint linkage mapping. All Goss’s wilt QTL had small effects, confirming that resistance to Goss’s wilt is highly quantitative. We report several potentially important chromosomal bins associated with multiple disease resistance including 1.02, 1.03, 3.04, 4.06, 4.08, and 9.03. Together, these findings indicate that disease QTL distribution is not random and that there are locations in the genome that confer resistance to multiple diseases. Furthermore, resistance to bacterial and fungal diseases is not entirely distinct, and we identified lines resistant to both fungi and bacteria, as well as loci that confer resistance to both bacterial and fungal diseases.more » « less
-
McIntyre, L (Ed.)Abstract The adelgids (Adelgidae) are a small family of sap-feeding insects, which, together with true aphids (Aphididae) and phylloxerans (Phylloxeridae), make up the infraorder Aphidomorpha. Some adelgid species are highly destructive to forest ecosystems such as Adelges tsugae, Adelges piceae, Adelges laricis, Pineus pini, and Pineus boerneri. Despite this, there are no high-quality genomic resources for adelgids, hindering advanced genomic analyses within Adelgidae and among Aphidomorpha. Here, we used PacBio continuous long-read and Illumina RNA-sequencing to construct a high-quality draft genome assembly for the Cooley spruce gall adelgid, Adelges cooleyi (Gillette), a gall-forming species endemic to North America. The assembled genome is 270.2 Mb in total size and has scaffold and contig N50 statistics of 14.87 and 7.18 Mb, respectively. There are 24,967 predicted coding sequences, and the assembly completeness is estimated at 98.1 and 99.6% with core BUSCO gene sets of Arthropoda and Hemiptera, respectively. Phylogenomic analysis using the A. cooleyi genome, 3 publicly available adelgid transcriptomes, 4 phylloxera transcriptomes, the Daktulosphaira vitifoliae (grape phylloxera) genome, 4 aphid genomes, and 2 outgroup coccoid genomes fully resolves adelgids and phylloxerans as sister taxa. The mitochondrial genome is 24 kb, among the largest in insects sampled to date, with 39.4% composed of noncoding regions. This genome assembly is currently the only genome-scale, annotated assembly for adelgids and will be a valuable resource for understanding the ecology and evolution of Aphidomorpha.more » « less
An official website of the United States government
